June 13, 2019
Lake and Baroni (2018) introduced the SCAN dataset probing the ability of seq2seq models to capture compositional generalizations, such as inferring the meaning of “jump around” 0-shot from the component words. Recurrent networks (RNNs) were found to completely fail the most challenging generalization cases. We test here a convolutional network (CNN) on these tasks, reporting hugely improved performance with respect to RNNs. Despite the big improvement, the CNN has however not induced systematic rules, suggesting that the difference between compositional and non-compositional behaviour is not clear-cut.
Publisher
ACL
Research Topics
May 22, 2023
Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, Michael Auli
May 22, 2023
February 24, 2023
Faisal Azhar, Hugo Touvron, Armand Joulin, Aurelien Rodriguez, Baptiste Rozière, Eric Hambro, Gautier Izacard, Guillaume Lample, Marie-Anne Lachaux, Naman Goyal, Thibaut Lavril, Timothee Lacroix, Xavier Martinet, Edouard Grave
February 24, 2023
February 20, 2023
Maziar Sanjabi, Aaron Chan, Hamed Firooz, Lambert Mathias, Liang Tan, Shaoliang Nie, Xiaochang Peng, Xiang Ren
February 20, 2023
December 31, 2022
Yossef Mordechay Adi, Abdelrahman Mohamed, Adam Polyak, Emmanuel Dupoux, Evgeny Kharitonov, Jade Copet, Morgane Rivière, Tu Anh Nguyen, Wei-Ning Hsu, Felix Kreuk
December 31, 2022
Latest Work
Our Actions
Newsletter