NLP

RESEARCH

CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs

November 16, 2020

Abstract

Cross-lingual document alignment aims to identify pairs of documents in two distinct languages that are of comparable content or translations of each other. In this paper, we exploit the signals embedded in URLs to label web documents at scale with an average precision of 94.5% across different language pairs. We mine sixty-eight snapshots of the Common Crawl corpus and identify web document pairs that are translations of each other. We release a new web dataset consisting of over 392 million URL pairs from Common Crawl covering documents in 8144 language pairs of which 137 pairs include English. In addition to curating this massive dataset, we introduce baseline methods that leverage cross-lingual representations to identify aligned documents based on their textual content. Finally, we demonstrate the value of this parallel documents dataset through a downstream task of mining parallel sentences and measuring the quality of machine translations from models trained on this mined data. Our objective in releasing this dataset is to foster new research in cross-lingual NLP across a variety of low, medium, and high-resource languages.

Download the Paper

AUTHORS

Written by

Ahmed El-Kishky

Vishrav Chaudhary

Francisco Guzmán

Philipp Koehn

Publisher

EMNLP 2020

Related Publications

June 02, 2019

SPEECH & AUDIO

NLP

The emergence of number and syntax units in LSTM language models | Facebook AI Research

Recent work has shown that LSTMs trained on a generic language modeling objective capture syntax-sensitive generalizations such as long-distance number agreement. We have however no mechanistic understanding of how they accomplish this…

Yair Lakretz, Germán Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene, Marco Baroni

June 02, 2019

June 01, 2019

SPEECH & AUDIO

NLP

Neural Models of Text Normalization for Speech Applications | Facebook AI Research

Machine learning, including neural network techniques, have been applied to virtually every domain in natural language processing. One problem that has been somewhat resistant to effective machine learning solutions is text normalization for…

Hao Zhang, Richard Sproat, Axel H. Ng, Felix Stahlberg, Xiaochang Peng, Kyle Gorman, Brian Roark

June 01, 2019

May 17, 2019

COMPUTER VISION

SPEECH & AUDIO

GLoMo: Unsupervised Learning of Transferable Relational Graphs | Facebook AI Research

Modern deep transfer learning approaches have mainly focused on learning generic feature vectors from one task that are transferable to other tasks, such as word embeddings in language and pretrained convolutional features in vision. However,…

Zhilin Yang, Jake (Junbo) Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun

May 17, 2019

May 06, 2019

COMPUTER VISION

NLP

No Training Required: Exploring Random Encoders for Sentence Classification | Facebook AI Research

We explore various methods for computing sentence representations from pre-trained word embeddings without any training, i.e., using nothing but random parameterizations. Our aim is to put sentence embeddings on more solid footing by 1) looking…

John Wieting, Douwe Kiela

May 06, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.