RESEARCH

COMPUTER VISION

Building High Resolution Maps for Humanitarian Aid and Development with Weakly- and Semi-Supervised Learning

June 16, 2019

Abstract

Detailed maps help governments and NGOs plan infrastructure development and mobilize relief around the world. Mapping is an open-ended task with a seemingly endless number of potentially useful features to be mapped. In this work, we focus on mapping buildings and roads. We do so with techniques that could easily extend to other features such as land use and land classification. We discuss real-world use cases of our maps by NGOs and humanitarian organizations around the world—from sustainable infrastructure planning to disaster relief. We investigate the pitfalls of existing datasets for building detection and road segmentation and highlight the way that models trained on these datasets—which tend to be highly specific to particular regions—produce worse results in regions of the world not adequately represented in the training set. We explain how we used data from OpenStreetMap (OSM) to train more generalizable models. These models outperform those trained on existing datasets, even in regions in which those models are overfit, and produce these same high-quality results for a diverse range of geographic areas. We utilize a combination of weakly-supervised and semi-supervised learning techniques that allow us to train on the noisy, crowdsourced data in OSM for building detection, which we formulate as a binary classification problem. We then show how weakly supervised learning techniques in conjunction with simple heuristics allowed us to train a semantic segmentation model for road extraction on noisy and never pixel-perfect training data from OSM.

Download the Paper

Related Publications

October 08, 2016

COMPUTER VISION

NLP

Learning Visual Features from Large Weakly Supervised Data | Facebook AI Research

Convolutional networks trained on large supervised datasets produce visual features which form the basis for the state-of-the-art in many computer-vision problems. Further improvements of these visual features will likely require even larger…

Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache

October 08, 2016

September 15, 2019

COMPUTER VISION

NLP

Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions | Facebook AI Research

We propose a fully convolutional sequence-to-sequence encoder architecture with a simple and efficient decoder. Our model improves WER on LibriSpeech while being an order of magnitude more efficient than a strong RNN baseline. Key to our…

Awni Hannun, Ann Lee, Qiantong Xu, Ronan Collobert

September 15, 2019

June 17, 2019

COMPUTER VISION

Graph-Based Global Reasoning Networks | Facebook AI Research

Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but…

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis

June 17, 2019

June 17, 2019

COMPUTER VISION

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition | Facebook AI Research

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals…

Zheng Shou, Xudong Lin, Yannis Kalantidis, Laura Sevilla-Lara, Marcus Rohrbach, Shih-Fu Chang, Zhicheng Yan

June 17, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.