December 15, 2022
Neural language models have been analyzed for their linguistic and extra-linguistic knowledge via probing. Of particular interest has been the following question: how much can a language model trained only on form learn about meaning? Recent work has demonstrated via probing classifiers that in the setting of simple procedural text, where by “meaning" we mean the underlying world state, language models have a non-trivial performance on world state tracking. However, our proposed evaluation based on model predictions shows differing results, suggesting that these models are either not capturing the world state or not using it. How do these results change if the model has access to the world state? We explore this alternate setting with access to the underlying world state only during training and investigate ways of “baking in” the state knowledge along with the primary task of language modeling. Our proposed approaches allow for state probing during inference simply via text prompts, avoiding any probing classifier machinery. In terms of performance, we show that baking in the state knowledge during training leads to significant improvements in state tracking performance and text generation quality.
Written by
Shubham Toshniwal
Karen Livescu
Kevin Gimpel
Sam Wiseman
Publisher
EMNLP
Research Topics
February 24, 2023
Faisal Azhar, Hugo Touvron, Armand Joulin, Aurelien Rodriguez, Baptiste Rozière, Eric Hambro, Gautier Izacard, Guillaume Lample, Marie-Anne Lachaux, Naman Goyal, Thibaut Lavril, Timothee Lacroix, Xavier Martinet, Edouard Grave
February 24, 2023
February 20, 2023
Maziar Sanjabi, Aaron Chan, Hamed Firooz, Lambert Mathias, Liang Tan, Shaoliang Nie, Xiaochang Peng, Xiang Ren
February 20, 2023
December 31, 2022
Yossef Mordechay Adi, Abdelrahman Mohamed, Adam Polyak, Emmanuel Dupoux, Evgeny Kharitonov, Jade Copet, Morgane Rivière, Tu Anh Nguyen, Wei-Ning Hsu, Felix Kreuk
December 31, 2022
December 29, 2022
Dexter Ju, Jason Weston, Sainbayar Sukhbaatar, Stephen Roller
December 29, 2022