RESEARCH

NLP

Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition

June 19, 2020

Abstract

Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of 32K semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by “some” as entailments. For some presupposition triggers like only, BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.

Download the Paper

AUTHORS

Written by

Paloma Jeretič

Alex Warstadt

Suvrat Bhooshan

Adina Williams

Publisher

Association for Computational Linguistics (ACL)

Related Publications

August 01, 2019

NLP

Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives | Facebook AI Research

Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui, Aston Zhang

August 01, 2019

July 29, 2019

NLP

Improved Zero-shot Neural Machine Translation via Ignoring Spurious Correlations | Facebook AI Research

Jiatao Gu, Yong Wang, Kyunghyun Cho, Victor O.K. Li

July 29, 2019

June 11, 2019

NLP

COMPUTER VISION

Adversarial Inference for Multi-Sentence Video Description | Facebook AI Research

Jae Sung Park, Marcus Rohrbach, Trevor Darrell, Anna Rohrbach

June 11, 2019

June 10, 2019

NLP

COMPUTER VISION

Mixture Models for Diverse Machine Translation: Tricks of the Trade | Facebook AI Research

Tianxiao Shen, Myle Ott, Michael Auli, Marc'Aurelio Ranzato

June 10, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.