RESEARCH

NLP

Anti-efficient encoding in emergent communication

December 08, 2019

Abstract

Despite renewed interest in emergent language simulations with neural networks, little is known about the basic properties of the induced code, and how they compare to human language. One fundamental characteristic of the latter, known as Zipf's Law of Abbreviation (ZLA), is that more frequent words are efficiently associated to shorter strings. We study whether the same pattern emerges when two neural networks, a" speaker" and a" listener", are trained to play a signaling game. Surprisingly, we find that networks develop an\emph {anti-efficient} encoding scheme, in which the most frequent inputs are associated to the longest messages, and messages in general are skewed towards the maximum length threshold. This anti-efficient code appears easier to discriminate for the listener, and, unlike in human communication, the speaker does not impose a contrasting least-effort pressure towards brevity. Indeed, when the cost function includes a penalty for longer messages, the resulting message distribution starts respecting ZLA. Our analysis stresses the importance of studying the basic features of emergent communication in a highly controlled setup, to ensure the latter will not strand too far from human language. Moreover, we present a concrete illustration of how different functional pressures can lead to successful communication codes that lack basic properties of human language, thus highlighting the role such pressures play in the latter.

Download the Paper

AUTHORS

Written by

Rahma Chaabouni

Emmanuel Dupoux

Evgeny Kharitonov

Marco Baroni

Publisher

NeurIPS

Related Publications

February 21, 2024

INTEGRITY

NLP

Watermarking Makes Language Models Radioactive

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, Teddy Furon

February 21, 2024

December 07, 2023

CONVERSATIONAL AI

NLP

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Davide Testuggine, Madian Khabsa

December 07, 2023

December 06, 2023

NLP

Polar Ducks and Where to Find Them: Enhancing Entity Linking with Duck Typing and Polar Box Embeddings

Mattia Atzeni, Mike Plekhanov, Frederic Dreyer, Nora Kassner, Simone Merello, Louis Martin, Nicola Cancedda

December 06, 2023

December 04, 2023

NLP

PATHFINDER: Guided Search over Multi-Step Reasoning Paths

Olga Golovneva, Sean O'Brien, Ram Pasunuru, Tianlu Wang, Luke Zettlemoyer, Maryam Fazel-Zarandi, Asli Celikyilmaz

December 04, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.