RESEARCH

NLP

Adversarial Inference for Multi-Sentence Video Description

June 10, 2019

Abstract

While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi- sentence descriptions for long videos is even more challenging. Among the main issues are the fluency and coherence of the generated descriptions, and their relevance to the video. Recently, reinforcement and adversarial learning based methods have been explored to improve the image captioning models; however, both types of methods suffer from a number of issues, e.g. poor readability and high redundancy for RL and stability issues for GANs. In this work, we instead propose to apply adversarial techniques during inference, designing a discriminator which encourages better multi-sentence video description. In addition, we find that a multi-discriminator “hybrid” design, where each dis- criminator targets one aspect of a description, leads to the best results. Specifically, we decouple the discriminator to evaluate on three criteria: 1) visual relevance to the video, 2) language diversity and fluency, and 3) coherence across sentences. Our approach results in more accurate, diverse, and coherent multi-sentence video descriptions, as shown by automatic as well as human evaluation on the popular ActivityNet Captions dataset.

Download the Paper

AUTHORS

Written by

Marcus Rohrbach

Anna Rohrbach

Jae Sung Park

Trevor Darrell

Publisher

CVPR

Related Publications

December 15, 2021

RESEARCH

Sample-and-threshold differential privacy: Histograms and applications

Akash Bharadwaj, Graham Cormode

December 15, 2021

December 06, 2021

NLP

Pay Better Attention to Attention: Head Selection in Multilingual and Multi-Domain Sequence Modeling

Hongyu Gong, Yun Tang, Juan Miguel Pino, Xian Li

December 06, 2021

November 16, 2021

NLP

Can Transformers Jump Around Right in Natural Language? Assessing Performance Transfer from SCAN

Rahma Chaabouni, Roberto Dessì, Evgeny Kharitonov

November 16, 2021

November 08, 2021

NLP

CORE MACHINE LEARNING

DOBF: A Deobfuscation Pre-Training Objective for Programming Languages

Baptiste Rozière, Marie-Anne Lachaux, Marc Szafraniec, Guillaume Lample

November 08, 2021

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.