RESEARCH

COMPUTER VISION

Adversarial Continual Learning

July 17, 2020

Abstract

Continual learning aims to learn new tasks without forgetting previously learned ones. We hypothesize that representations learned to solve each task in a sequence have a shared structure while containing some task-specific properties. We show that shared features are significantly less prone to forgetting and propose a novel hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features required to solve a sequence of tasks. Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills. We demonstrate our hybrid approach is effective in avoiding forgetting and show it is superior to both architecture-based and memory-based approaches on class incrementally learning of a single dataset as well as a sequence of multiple datasets in image classification. Our code is available at https://github.com/facebookresearch/Adversarial-Continual-Learning

Download the Paper

AUTHORS

Written by

Marcus Rohrbach

Franziska Meier

Roberto Calandra

Sayna Ebrahimi

Trevor Darrell

Publisher

ECCV

Research Topics

Computer Vision

Related Publications

February 13, 2024

GRAPHICS

COMPUTER VISION

IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

January 25, 2024

COMPUTER VISION

LRR: Language-Driven Resamplable Continuous Representation against Adversarial Tracking Attacks

Felix Xu, Di Lin, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Wei Feng, Xuhong Ren

January 25, 2024

December 08, 2023

COMPUTER VISION

Learning Fine-grained View-Invariant Representations from Unpaired Ego-Exo Videos via Temporal Alignment

Sherry Xue, Kristen Grauman

December 08, 2023

November 10, 2023

COMPUTER VISION

EgoDistill: Egocentric Head Motion Distillation for Efficient Video Understanding

Shuhan Tan, Tushar Nagarajan, Kristen Grauman

November 10, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.