RESEARCH

A Gated Hypernet Decoder for Polar Codes

May 3, 2020

Abstract

Hypernetworks were recently shown to improve the performance of message passing algorithms for decoding error correcting codes. In this work, we demonstrate how hypernetworks can be applied to decode polar codes by employing a new formalization of the polar belief propagation decoding scheme. We demonstrate that our method improves the previous results of neural polar decoders and achieves, for large SNRs, the same bit-error-rate performances as the successive list cancellation method, which is known to be better than any belief propagation decoders and very close to the maximum likelihood decoder.

Download the Paper

AUTHORS

Written by

Eliya Nachmani

Lior Wolf

Publisher

International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Recent Publications

January 01, 2021

Asynchronous Gradient-Push | Facebook AI Research

We consider a multi-agent framework for distributed optimization where each agent has access to a local smooth strongly convex function, and the collective goal is to achieve consensus on the parameters that minimize the sum of the agents’…

Mahmoud Assran, Michael Rabbat

January 01, 2021

August 22, 2020

GrokNet: Unified Computer Vision Model Trunk and Embeddings For Commerce

In this paper we propose image classification modeling technique targeted for marketplace. We use public posts from marketplace and search log interactions for training image classifier and achieve significant improvements in e-commerce in comparison to previous version of our image classifier.

Sean Bell, Yiqun Liu, Sami Alsheikh, Yina Tang, Ed Pizzi, M. Henning, Karun Singh, Omkar Parkhi, Fedor Borisyuk

August 22, 2020

June 16, 2020

COMPUTER VISION

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization

Due to memory limitations in current hardware, previous approaches tend to take low resolution images as input to cover large spatial context, and produce less precise (or low resolution) 3D estimates as a result. We address this limitation by formulating a multi-level architecture that is end-to-end trainable

Shunsuke Saito, Tomas Simon, Jason Saragih, Hanbyul Joo

June 16, 2020

June 14, 2020

Iterative Answer Prediction with Pointer-Augmented Multimodal Transformers for TextVQA | Facebook AI Research

Many visual scenes contain text that carries crucial information, and it is thus essential to understand text in images for downstream reasoning tasks. For example, a deep water label on a warning sign warns people about the danger in the…

Ronghang Hu, Amanpreet Singh, Trevor Darrell, Marcus Rohrbach

June 14, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.