RESEARCH

A Closer Look at the Optimization Landscapes of Generative Adversarial Networks

April 20, 2020

Abstract

Generative adversarial networks have been very successful in generative modeling, however they remain relatively challenging to train compared to standard deep neural networks. In this paper, we propose new visualization techniques for the optimization landscapes of GANs that enable us to study the game vector field resulting from the concatenation of the gradient of both players. Using these visualization techniques we try to bridge the gap between theory and practice by showing empirically that the training of GANs exhibits significant rotations around Local Stable Stationary Points (LSSP), similar to the one predicted by theory on toy examples. Moreover, we provide empirical evidence that GAN training converge to a stable stationary point which is a saddle point for the generator loss, not a minimum, while still achieving excellent performance.

Download the Paper

AUTHORS

Written by

Hugo Berard

Gauthier Gidel

Amjad Almahairi

Pascal Vincent

Simon Lacoste-Julien

Recent Publications

December 14, 2021

Sample-and-threshold differential privacy: Histograms and applications

Akash Bharadwaj, Graham Cormode

December 14, 2021

May 14, 2021

Not All Memories are Created Equal: Learning to Forget by Expiring

Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen Roller, Arthur Szlam, Jason Weston, Angela Fan

May 14, 2021

May 03, 2021

NLP

Support-Set bottlenecks for video-text representation learning

Mandela Patrick, Po-Yao Huang, Florian Metze , Andrea Vedaldi, Alexander Hauptmann, Yuki M. Asano, João Henriques

May 03, 2021

April 08, 2021

RESPONSIBLE AI

INTEGRITY

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.