RESEARCH

COMPUTER VISION

Self-Supervised Learning by Cross-Modal Audio-Video Clustering

December 06, 2020

Abstract

Visual and audio modalities are highly correlated, yet they contain different information. Their strong correlation makes it possible to predict the semantics of one from the other with good accuracy. Their intrinsic differences make cross-modal prediction a potentially more rewarding pretext task for self-supervised learning of video and audio representations compared to within-modality learning. Based on this intuition, we propose Cross-Modal Deep Clustering (XDC), a novel self-supervised method that leverages unsupervised clustering in one modality (e.g., audio) as a supervisory signal for the other modality (e.g., video). This cross-modal supervision helps XDC utilize the semantic correlation and the differences between the two modalities. Our experiments show that XDC outperforms single-modality clustering and other multi-modal variants. XDC achieves state-of-the-art accuracy among self-supervised methods on multiple video and audio benchmarks. Most importantly, our video model pretrained on large-scale unlabeled data significantly outperforms the same model pretrained with full-supervision on ImageNet and Kinetics for action recognition on HMDB51 and UCF101. To the best of our knowledge, XDC is the first self-supervised learning method that outperforms large-scale fully-supervised pretraining for action recognition on the same architecture.

Download the Paper

AUTHORS

Written by

Du Tran

Bruno Korbar

Dhruv Mahajan

Lorenzo Torresani

Bernard Ghanem

Humam Alwassel

Publisher

NeurIPS

Research Topics

Computer Vision

Related Publications

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 23, 2024

COMPUTER VISION

Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on Aerial Lidar

Jamie Tolan, Eric Yang, Ben Nosarzewski, Guillaume Couairon, Huy Vo, John Brandt, Justine Spore, Sayantan Majumdar, Daniel Haziza, Janaki Vamaraju, Theo Moutakanni, Piotr Bojanowski, Tracy Johns, Brian White, Tobias Tiecke, Camille Couprie, Edward Saenz

April 23, 2024

April 23, 2024

CONVERSATIONAL AI

GRAPHICS

Generating Illustrated Instructions

Sachit Menon, Ishan Misra, Rohit Girdhar

April 23, 2024

April 18, 2024

COMPUTER VISION

Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation

Jonas Kohler, Albert Pumarola, Edgar Schoenfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda, Ali Thabet

April 18, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.